DIE WELT DES EDELSTAHLS THE WORLD OF SPECIAL STEEL

Oberste-Beulmann Edelstähle-Special Steels

Technical data sheet		Grade	PT-K39 powderTEC [®]	powder TEC °	
		powderTEC [®] is a regist	powderTEC $^{ extbf{@}}$ is a registered trademark of W. Oberste-Beulmann GmbH Co. KG		
Chemical composition (%)		Material properties			
Carbon	2,48	PT-K39 powderTEC	® is a powder metallurgically produced cold	working with a very fine, uniform.	
Silicon	0,50		segregation-free microstructure and carbide distribution. Through an increased vanadium content and the resulting enrichment of the microstructure with hard carbides, the abrasive wear resistance has been improved. PT-K39 powderTEC [®] , compared to PT-S52 powderTEC [®] , is characterized by improved wear resistance while maintaining its excellent toughness properties.		
Manganese	0,30				
Chromium	4,30				
Molybdenum	4,00	· ·			
Vanadium	8,90				
Tungsten	1,00	PT-K39 powderTEC [®] can withstand the highest of pressure loads.			
Cobalt	2,00				
Other	-				

Intended use

- Tools for cold and semi-hot working applications such as extrusion tools, drawing dies, coining tools, powder compacting tools, cold rolling tools and pilger mandrels
- Cutting and punching tools, fine blanking tools
- Cold-heading punches, piercing punches
- Knives for cutting, shearing, deburring, foil cutting knives, knives for the recycling, paper and packaging industries
- Wear parts in plastics processing such as injection molding tools, cylinders and feed screws, inserts, and injection nozzles

Manufacturing program

Delivery form	Dimension (mm)
Round	3 - 350 mm
Flat	5 x 50 to 205 x 505 mm
Square	10 - 300 mm
Wire	on request
Sheet metal	on request
Round blanks	on request

Material properties	
Melting	Powder metallurgy
Delivery condition	soft annealed
Hardness (HB)	max. 250
Tensile strength (N/mm²)	-
Working hardness (HRc)	58 - 64
Microstructure	-
Degree of purity (DIN 50602)	K1 max. 15

Physical properties				
	20°C	100°C	300°C	500°C
Specific weight (g/cm³)	7,50		7,40	7,35
Modulus of elasticity E (GPa)	221	216	204	188
Thermal conductivity (W / m * K)	20,1	21,6	24,2	25,9
Coefficient of thermal expansion (10 ⁻⁶ m/m.K)		12,20	13,00	13,70

Comparison of microstructure properties

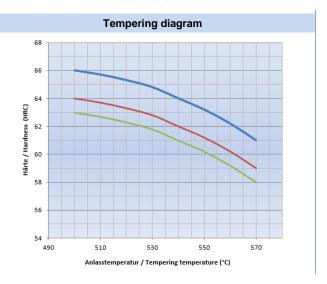
Carbide distri	bution (V = 100:1)	Segregations (V = 50:1)		
Conventional	OB powderTEC [®]	Conventional	OB powderTEC [®]	
500 µm	500 µm	1000 µm	1000 µm	

	Heat	treati	ment
--	------	--------	------

Soft annealing		Low-voltage annea	ling
Heating	uniformly to 870 - 900 °C	Heating	650 – 700 °C
Holding time	2 h	Holding time	At least 4 hours after complete heat penetration.
Cooling down	oven	Cooling down	Oven – at approx. 500 °C
Cooling rate	approx. 10 °C / h to 540 °C		
Final cooling	calm air	Final cooling	Calm air

DIE WELT DES EDELSTAHLS THE WORLD OF SPECIAL STEEL

Oberste-Beulmann **Edelstähle-Special Steels**


Preheating stage 1 450 - 500 °C Preheating stage 2 850 - 900 °C Preheating stage 3 **) 1050 - 1080 °C **) depending on the tool geometry and the hardening temperature

 $^{**})$ depending on the tool geometry and the hardening temperature (> 1150 $^{\circ}\text{C})$

Austenitizing temperature 1030 – 1180 °C 1070 °C High toughness

1180 °C Highest wear resistance

The holding times must be adjusted accordingly for large or very thinwalled tool cross-sections. The standard guidelines for high-speed steel can be applied.

Cooling	
Cooling medium	Air, hot bath (at 540 °C), interrupted
	Oil quenching
Cooling vacuum	min. 5 bar overpressure
Cooling salt bath / oil	Achieving maximum hardness
Recommendation	Best toughness properties through hot bath cooling

Hardness (+/- 1 HRc)	Harde	ening tempera	ature
Tempering temperature	1070 °C	1110 °C	1180 °C
540 °C	61,0	62,0	64,0
550 °C	60,0	61,0	62,0
560 °C	59,0	60,0	61,0

Service hardness (depending on the heat treatment parameters)

For cold working applications, tempering should always be carried out at 560 °C, regardless of the austenitizing temperature used.

Tempering	
Time	Slow heating to tempering temperature immediately after hardening.
	Temper immediately after the tool has cooled to below 50 °C
Tempering temperature	540 - 560 °C
Dwell time in the oven	1 hour / 20 mm workpiece thickness, min. 2 h
Tempering cycles	at least 3 cycles.
	Tools must cool down to room temperature between tempering cycles.

Surface treatment

Surface coating using the CVD or PVD process is possible. The use of all common nitriding processes is also possible at any time.

	Heat treatment instructions	
	1st preheating stage	450 - 500 °C
	2nd preheating stage	870 - 900 °C
	3rd preheating stage	1050 - 1080 °C
	Hardening	see table
	Tempering	550 °C - 3 x 2 hours each
١	Service hardness	60 - 62 HRc