DIE WELT DES EDELSTAHLS THE WORLD OF SPECIAL STEEL

Oberste-Beulmann Edelstähle – Special Steels

Technical Data Sheet				Grade		Code (SEL)				Powder metallurgical				
			0	B-PM-S79			-				High Speed Steel			
Steel properties														
OB-PM-S79 is a high-speed steel produced by means of a powder metallurgical process which has a very fine, uniform, segregation-free microstructure and carbide distribution. It possesses good wear resistance, high toughness and very good dimensional stability OB-PM-S79 is readily nitridable to improve its abrasive and adhesive wear resistance. Its homogeneous microstructure also makes it highly suitable for PVD and CVD coating.														
Applications														
OB-PM-S79 is employed in particular for applications in the area of cold working, such as punching, cutting and forming tools. Other applications cover machining tools, such as heavy-duty hob cutters, broaches, generating cutters, punches, dies etc.														
<u>C %</u>	<u>C %</u> <u>Si %</u>		<u>(</u>	<u>Cr %</u>	<u>Mo %</u>	Ni	<u>%</u>	<u>V %</u>	N	<u>I %</u>	<u>Co %</u>	0	ther %	
1,30	0,60	0,30 4,10 5,00			- 3,10 6,30						-			
Melting						Remar	ks							
Density (g/cm ³)		7,80	7,80											
Supply condition		soft annealed												
Hardness (HB)		max. 280												
Tensile strength (N/mm ²)														
Work hardness (HRC) 58 – 6			- 64 (depending on intended use)											
Structure -														
Cleanness (I	Cleanness (DIN 50602) K1 max. 15													
Physical properties 20 °C 100 °C 200 °C 300 °C 350 °C 400 °C 500						500 °C	600 °C	700 °C						
Thermal expansion coeffic		cient 1	I0- ⁶ * K	(20 °C to)	-	11,0	11,3	11,6	-	11,9	12,4	12,6	12,5	
Thermal con	m * K) a	K) annealed 20,3				22,0 23,5 24,3 - 25,0 25,3 25,7 26,2						26,2		
				Comparis	on of mic	rostructi	ural prop	erties						
Carbide distribution (V = 100:1)						Segregation (v = 50:1)								
conventional			OE	OB powderTEC			conventional			OB powderTEC				
500 µm						1000 µm 1000 µm								
Heat treatme	ent	Temperat	ure (°C)	Cooling	Re	emarks heat treatment								
Stress-relief annealing ca. 650 Furnace – Air Stress relief after extensive machining and in case of complex to the stress relief after extensive machining and in case of complex to the stress relief after extensive machining and in case of complex to the stress relief after extensive machining and in case of complex to the stress relief after extensive machining and in case of complex to the stress relief after extensive machining and in case of complex to the stress relief after extensive machining and in case of complex to the stress relief after extensive machining and in case of complex to the stress relief after extensive machining and in case of complex to the stress relief after extensive machining and in case of complex to the stress relief after extensive machining and in case of complex to the stress relief after extensive machining and in case of complex to the stress relief after extensive machining and in case of complex to the stress relief after extensive machining and in case of complex to the stress relief after extensive machining and in case of complex to the stress relief after extensive machining and in case of complex to the stress relief after extensive machining and in case of complex to the stress relief after extensive machining and in case of complex to the stress relief after extensive machining and in case of complex to the stress relief after extensive machining and in case of complex to the stress relief after extensive machining and in case of complex to the stress relief after extensive machining and in case of complex to the stress relief after extensive machining after ex					lex tools.	.								
followed by cooling in still air														

Note: The information contained in this brochure serves to describe the relevant products and processes; liability is excluded.

DIE WELT DES EDELSTAHLS THE WORLD OF SPECIAL STEEL

Heat treatment	Temperature (°C) Cooling		Remarks heat treatment					
Hardening	1050 – 1180		Hardening can be carried out under vacuum, in salt bath or in a furnace with					
Pre – heating Step 1	450 – 550		a controlled (neutral) atmosphere.					
Pre – heating Step 2	850 – 900		*) Essential when high austenitizing temperatures are involved.					
Pre – heating Step 3	1050 *)							
Quenching	ca. 550 Hot bath		Quench in hot bath and hold. Followed by slow cooling to lukewarm					
			temperature in the air.					

Vakuum

Gas pressure: Dependent on size of part, but min. 4 bar. Then continue

Tempering – Hardness (HRC) after tempering (Reference value)

Temperature °C	500	520	540	560	580	600	620
1180	64,5	67,0	67,0	66,0	65,0	62,0	59,0
1150	64,0	66,0	66,0	64,0	63,0	60,0	57,0
1100	63,0	64,0	63,0	62,0	60,0	57,0	54,0
1050	61,5	62,0	61,0	60,0	57,0	55,0	51,0

The tempering diagram shows hardness values at different austenitizing and tempering temperatures.

Remarks for tempering

Temper directly after quenching

Slow heating to tempering temperature directly after hardening

Holding time in furnace 1 h per 20 mm of workpiece thickness, but min. 2 h

A second tempering cycle (normally at 560 $^{\circ}\text{C})$ is necessary, a third tempering cycle is recommended

Slow cooling to 50 °C to ensure transformation of residual austenite

Thermal Cycle Diagram (Heat treatment)

Note: The information contained in this brochure serves to describe the relevant products and processes; liability is excluded.

Wilhelm Oberste-Beulmann GmbH & Co. KG

An der Hasenjagd 2, D-42897 Remscheid | Tel.: +49 (0) 2191 93 60-0 | Fax: +49 (0) 2191 93 60 70 | info@oberste-beulmann.de | www.oberste-beulmann.de